Для нахождения sin a можно воспользоваться тригонометрическим тождеством sin^2(a) + cos^2(a) = 1. Подставив значение cos a = 2/√5, получаем:
sin^2(a) + (2/√5)^2 = 1
sin^2(a) + 4/5 = 1
sin^2(a) = 1 - 4/5
sin^2(a) = 1/5
sin a = ±√(1/5)
Для нахождения tg a можно воспользоваться тригонометрическим тождеством tg a = sin a / cos a. Подставив найденные значения sin a и cos a, получаем:
tg a = (±√(1/5)) / (2/√5)
tg a = ±(1/2)
Для нахождения ctg a можно воспользоваться тригонометрическим тождеством ctg a = 1 / tg a. Подставив найденное значение tg a, получаем:
ctg a = 1 / (±1/2)
ctg a = ±2
Таким образом, sin a = ±√(1/5), tg a = ±(1/2), ctg a = ±2.